Dictionaries
Exercise 1: count bases
#!/usr/bin/env python
seq = raw_input('Enter DNA: ')
counts = {}
for s in seq:
counts[s] = counts.get(s, 0) + 1
for key, value in counts.items():
print key, '=', value
Result:
Enter DNA: ACRSAS A = 2 C = 1 R = 1 S = 2
Exercise 2: count for several sequences
#!/usr/bin/env python
f = open('./ambiguous_sequences.seq')
lines = f.readlines()
for l in lines:
seq = l.rstrip()
counts = {}
for s in seq:
counts[s] = counts.get(s, 0) + 1
print 'Sequence has', str(len(seq)), 'bases.'
for key, value in counts.items():
print key, '=', value
Result:
Sequence has 1267 bases. A = 287 C = 306 B = 1 G = 389 R = 1 T = 282 Y = 1 Sequence has 553 bases. A = 119 C = 161 T = 131 G = 141 N = 1 Sequence has 1521 bases. A = 402 C = 196 T = 471 G = 215 N = 237 ... ... Sequence has 1285 bases. A = 327 Y = 1 C = 224 T = 371 G = 362 Sequence has 570 bases. A = 158 C = 120 T = 163 G = 123 N = 6 Sequence has 1801 bases. C = 376 A = 465 S = 1 T = 462 G = 497
Exercise 3: sort keys
#!/usr/bin/env python
f = open('./ambiguous_sequences.seq')
lines = f.readlines()
for l in lines:
seq = l.rstrip()
counts = {}
for s in seq:
counts[s] = counts.get(s, 0) + 1
print 'Sequence has', str(len(seq)), 'bases.'
for key in sorted(counts.keys()):
print key, '=', counts[key]
Result:
Sequence has 1267 bases. A = 287 B = 1 C = 306 G = 389 R = 1 T = 282 Y = 1 ...
Exercise 4: sum up
#!/usr/bin/env python
import sys
counts = {}
for l in sys.stdin:
seq = l.rstrip()
for s in seq:
counts[s] = counts.get(s, 0) + 1
print 'File has', str(sum(counts.values())), 'bases.'
for key in sorted(counts.keys()):
print key, '=', counts[key]
Result:
File has 24789 bases. A = 6504 B = 1 C = 5129 D = 1 G = 5868 K = 1 M = 1 N = 392 R = 3 S = 2 T = 6878 W = 1 Y = 8
Exercise 5: reverse complementary
#!/usr/bin/env python
import sys
counts = {}
comp = dict(zip('ATGC','TACG'))
def revcomp(seq):
seq = list(seq)
return ''.join([comp.get(nt,'N') for nt in seq[::-1]])
for line in sys.stdin:
seq0 = line.rstrip()
seq1 = revcomp(seq0)
print seq0, '\n->\n', seq1, '\n'
Result:
$ python 5.py < 10_sequences.seq CCTGTATTAGCAGCAGATTCGATTAGCTTTACAACAATTCAATAAAATAGCTTCGCGCTAA -> TTAGCGCGAAGCTATTTTATTGAATTGTTGTAAAGCTAATCGAATCTGCTGCTAATACAGG ATTTTTAACTTTTCTCTGTCGTCGCACAATCGACTTTCTCTGTTTTCTTGGGTTTACCGGAA -> TTCCGGTAAACCCAAGAAAACAGAGAAAGTCGATTGTGCGACGACAGAGAAAAGTTAAAAAT ...
Exercise 6: ambiguous DNA complement
#!/usr/bin/env python
import sys
counts = {}
comp = dict(zip('ATGC','TACG'))
ambiguous_dna_complement = dict(zip('ACGTMRWSYKVHDBN','TGCAKYWSRMBDHVN'))
def revcomp(seq):
seq = list(seq)
return ''.join([ambiguous_dna_complement[nt] for nt in seq[::-1]])
for line in sys.stdin:
seq0 = line.rstrip()
seq1 = revcomp(seq0)
print seq0, '\n->\n', seq1, '\n'
Result:
$ python 6.py AMCRGTH AMCRGTH -> DACYGKT
Advanced exercises
Exercise 1
#!/usr/bin/env python
input = open('./iupac_codes.txt')
input.readline() # remove header
d = dict()
for line in input.readlines():
am, uns = line.rstrip().split()
uns = uns.split(',')
for un in uns:
# assign ambiguous code to unambiguous code.
if d.has_key(un):
d[un] += ',' + am
else:
d[un] = am
output = open('iupac_out.txt','w')
print >>output, 'Nucl.\tCodes'
for key, value in d.items():
print >>output, '\t'.join([key, value])
Result:
$ cat iupac_out.txt Nucl. Codes A A,M,R,W,V,H,D,N C C,M,S,Y,V,H,B,N T T,W,Y,K,H,D,B,N G G,R,S,K,V,D,B,N
Exercise 2: translate DNA to protein
#!/usr/bin/env python
codon_table = { 'TTT': 'F', 'TTC': 'F', 'TTA': 'L', 'TTG': 'L',
'TCT': 'S', 'TCC': 'S', 'TCA': 'S', 'TCG': 'S', 'TAT': 'Y',
'TAC': 'Y', 'TGT': 'C', 'TGC': 'C', 'TGG': 'W', 'CTT': 'L',
'CTC': 'L', 'CTA': 'L', 'CTG': 'L', 'CCT': 'P', 'CCC': 'P',
'CCA': 'P', 'CCG': 'P', 'CAT': 'H', 'CAC': 'H', 'CAA': 'Q',
'CAG': 'Q', 'CGT': 'R', 'CGC': 'R', 'CGA': 'R', 'CGG': 'R',
'ATT': 'I', 'ATC': 'I', 'ATA': 'I', 'ATG': 'M', 'ACT': 'T',
'ACC': 'T', 'ACA': 'T', 'ACG': 'T', 'AAT': 'N', 'AAC': 'N',
'AAA': 'K', 'AAG': 'K', 'AGT': 'S', 'AGC': 'S', 'AGA': 'R',
'AGG': 'R', 'GTT': 'V', 'GTC': 'V', 'GTA': 'V', 'GTG': 'V',
'GCT': 'A', 'GCC': 'A', 'GCA': 'A', 'GCG': 'A', 'GAT': 'D',
'GAC': 'D', 'GAA': 'E', 'GAG': 'E', 'GGT': 'G', 'GGC': 'G',
'GGA': 'G', 'GGG': 'G' }
stop_codons = ['TAA', 'TAG', 'TGA']
start_codons = ['TTG', 'CTG', 'ATG']
more = dict(zip(stop_codons, ' *'))
codon_table.update(more)
seq = raw_input('Enter DNA sequence: ').upper()
codons = [seq[i*3:i*3+3] for i in range(len(seq)/3)]
# alternatively, this keeps the extra bases at the end if the sequence length is not a multiple of 3.
# codons = [seq[i:i+3] for i in range(0, len(seq), 3)]
assert (codons[0] in start_codons), "First codon is not a start codon."
acids = [codon_table.get(codon, '*') for codon in codons]
print ''.join(acids)
Result:
Enter DNA sequence: atgcagtcagctagctagctagctagctagatcgtacgatcgacatagctcg MQSAS*LAS*IVRST*L
Hide Comments